
MATHEMATICS OF COMPUTATION 
VOLUME 42, NUMBER 165 
3ANUARY X984, PAGES 231-233 

Odd Triperfect Numbers 
By Masao Kishore* 

Abstract. We prove that an odd triperfect number has at least ten distinct prime factors. 

1. A positive number N is called a triperfect number if a(N) = 3N, where a(N) is 
the sum of the positive divisors of N. Six even triperfect numbers are known: 

2*4 5 7 19 31 151, 
2* 3* 11 * 43 * 127, 
29 3 11 31, 
28. 5 *7* 19 * 37* 73, 
25 3 . 7, 
23 3 * 5. 

However, the existence of an odd triperfect (OT) number is an open question. 
McDaniel [1] and Cohen [2] proved that an OT number has at least nine distinct 
prime factors, and Beck and Najar [3] showed that it exceeds 1050. 

In this paper using the technique of [4], we prove 

THEOREM. If N is OT, N has at least ten distinct prime factors. 

2. Throughout this paper we let 

r 
N= a7P, 

i= 1 

where pi's are odd primes, p I < ... < Pr and ai 's are positive integers. 
The following lemmas are easy to prove: 

LEMMA 1. If N is OT, 

(1) a, 's are even for1 < i < r. 

LEMMA 2. If N is OT and q is a prime factor of o(p') for some i, then q = 3 or 
q=p1forsomej, j r. 

LEMMA 3. If N is OT and r = 9, P8 < 80. 
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As in [4] we define 

S(N) =-(N)/N, 

a(p) = Min(al a is even andpa+ I > 10"), 

b,= Min{ai, a(pi)), 
r 

M= Hpb, 
j= I 

LEMMA 4. If N is OT, then 

(2) log3 - r 10- < log S(M) < log3. 

Proof. Since MI N, S(M) < S(N) = 3 and so log S(M) < log 3. In [4] we proved 
thatifa > a(p), then 

O < log S(pa) - log S(pa(P)) < 10- I. 

Hence 

0 < logS(N)-logS(M) < r 10-, 

and we have 

log 3-r 10- =log S(N)-r - 10"- < log S(M). 

Q.E.D. 

COROLLARY. If N is OT, L = M/pb, and if Pr > 3500, then 

(3) log 3 -r - 10"- -log S(34992) < log S(L) < log 3. 

Proof of Theorem. We used a computer (PDP 11 at the University of Toledo) to 
find 

9 

M = Flpa 
i= I 

satisfying (1), ai < a(pi) for 1 < i < 9, (2) with r = 9, and pq < 3500. There were 71 
such M's; however, all of them had a factor pa' such that ai < a(pi), a(pa') had a 
primefactorq > 3, andq * pj, 1 < j < 9. 

Next we tried to find 
8 

L -H a, 
i= I 

satisfying (I), a, < a(p,) for 1 < i < 8, and (3) with r = 9. There were 12689 such 
L's; however, 12473 of them had a factor pa, such that ai < a(pi), a(pa') had a 
prime factor q > 3, q * pj for 1 < j < 8, and 

log S(L) + log S(q2) > log3. 

The remaining 216 of them had the following properties: there exist two consecu- 
tive primes u and v such that 3500 < u < v, 

log S(L) + log S(u2) > log3, and 

log S(L) + log v/(v - 1) < log3 -9* 109-". 
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These three cases show that if N is an odd integer with r = 9, then N cannot be 
OT. Q.E.D. 

The computer time was over five hours. 
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